GCiM: A Near-Data Processing Accelerator for
Graph Construction

Lei He* T, Cheng Liu* f, Ying Wang* T, Shengwen Liang* T, Huawei Li* ¥ and Xiaowei Li* f

*SKLCA, Institute of Computing Technology, Chinese Academy of Science, Beijing, China
YUniversity of Chinese Academy of Science, Beijing, China
YPeng Cheng Laboratory, Shenzhen, China
Email:{heleil9g, liucheng, wangying2009, liangshengwen, lihuawei, lxw} @ict.ac.cn

Abstract—Graph is widely utilized as a key data structure
in many applications like social network and recommendation
systems. However, real-world graph construction typically in-
volves massive random memory accesses and distance calculation,
resulting in considerable processing time and energy consump-
tions on CPUs and GPUs. In this work, we present GCiM, a
specialized processing-in-memory architecture for efficient graph
construction and update. By directly deploying the computing
units on the logic layer of the 3D stacked memory, GCiM benefits
from memory-level parallelism and further improves the memory
access efficiency with both optimized processing ordering and
data layout. According to our experiments, GCiM shows 634.64X
and 53.29X speedup while consuming 1470.7X and 442.56X less
energy compared to CPU and GPU respectively.

I. INTRODUCTION

Graph is a widely adopted data structure to interpret the
non-linear entities in the fields of machine learning [1] and
relational data processing [2]], and it is becoming increas-
ingly popular in modern computing systems. When large-
scale correlated random data is converted into a graph, many
powerful graph learning or processing methods can be applied
to the complicated data, such as manifold embedding, semi-
supervised graph learning, or relation-based data retrieval [3]].
For example, in modern recommendation systems or social
networks, the users, items, and their relations are described as
large graphs of billion-scale nodes, so that the machine learn-
ing or mining can retrieve or index the high-dimensional data
of interest more conveniently [4]]. Therefore, converting large-
scale data into graphs representation, including the vertices,
edges, and the according property of high-dimension vector
is a mandatory and common step before mining, indexing, or
search operations on the large-scale data such as images and
videos. The most popular graph construction framework is k-
nearest neighbor (kNN) graph, where each node is connected
to its k nearest neighbors. After applying such constructor,
the similarities and correlations between objects can be kept,
which enables highly-efficient accesses and retrieval opera-
tions upon the graph data entries.

However, billion-scale kNN graph construction and update
is a non-trivial task, and poses a severe challenge to the
computation strength, bandwidth, and power of state-of-the-
art computing systems. Particularly, for the applications in-
volving dynamic graphs that must be repetitively updated and

978-1-6654-3274-0/21/$31.00 ©2021 IEEE

reconstructed [S[], how to perform energy and memory efficient
graph construction is essential to the system efficiency in
warehouse computers, which must be optimized in power and
performance for low total cost of ownership (TCO).

Plenty of works from both software and hardware areas have
been conducted to optimize the construction of kNN graphs,
such as NN-descent [[6], EFANNA [7] on CPU, Faiss on GPU
[8]l, and specialized hardware architecture like Tigris [9] and
QuickNN [10]. The large-scale graph construction and on-line
update over billion-scale entities like users in social network
and items in on-line C2C platforms [11]] typically involve
numerous random memory accesses, resulting in serious per-
formance and power penalty to the system. Even though GPU
solutions provide adequate computation parallelism [§], the
irregular data accesses to large-scale and complicated graph
data in memory still cause severe resource under-utilization in
GPUs, aggravating the energy efficiency of power-consuming
GPUs. Meanwhile, existing hardware designs for graph pro-
cessing and graph learning mainly focused on tree search [[12]]
and graph search [13]], or specific applications such as 3D
points [9] [10], which can be employed to construct small
graphs of particular types, but they are also subject to the
issue of memory bandwidth insufficiency and latency penalty
encountered by large-scale graph construction.

In general, hardware solutions to graph construction for real-
world applications suffer from three fold issues: 1) Graph
construction essentially involves massive random memory
accesses for the step of similarity establishment, thus requiring
high bandwidth provision. 2) Prior methods do not fully
exploit the data reusability in high-degree graph vertices,
causing dramatic bandwidth waste in memory accesses. 3)
Current graph construction solutions are designed to organize
the whole dataset into a graph, but such strategy in dynamic
graphs [5]], where most points have no interaction with the
newly inserted ones, will become extremely inefficient due to
many redundant operations.

To cope with these issues, we proposed GCiM, a specialized
processing-in-memory architecture to better accelerate the
large-scale KNN-based graph construction and update in real-
world applications. Firstly, we architect and design the GCiM
accelerator directly on the logic layer of 3D stacked DRAM
memory modules similar to Hybrid Memory Cube (HMC) to
fully exploit both vault and bank level parallelism for better

bandwidth utilization. Secondly, we propose a leaf-granularity
access strategy in graph manipulation to increase the efficiency
of data reuse and reduce data transmission. In addition, we
design a dedicated data layout to balance the processing of 10
intensive hardware modules for less random memory accesses.
Finally, we utilize a tree-search module to insert the new
points into the intentionally condensed sub-graphs, so that
dynamic graph construction induces lower cost and maintains
the quality of updated graph simultaneously.

In summary, we make the following contributions:

1) We proposed an in-memory graph construction architec-
ture for kNN algorithm so that the massive irregular data
features can be converted into weighted graphs in the
memory without being frequently transmitted between
the processor chips and memory modules.

2) The proposed architecture, GCiM, fully utilizes
memory-level parallelism inside memory cubes and
adopts a leaf granularity strategy with optimized data
layout to reduce data transmission and improve the
internal bandwidth utilization. Moreover, GCiM is the
first hardware accelerator optimized to provide high
throughput and low latency for online graph update.

3) We implemented GCiM with a cycle-accurate simulator,
and evaluated the performance and energy-efficiency
benefits brought to the graph processing and learning
systems. The experiment shows that GCiM can speed
up the graph construction operation by 634.64X and
53.29X, reduce the energy consumption by 1470.7X and
442.56X on average, when compared to the CPU and
GPU baselines respectively.

II. BACKGROUND AND MOTIVATION
A. Related Work on Graph Construction

Graph construction plays an important role in organizing
large relational data as graphs for efficient machine learning
and mining in many applications such as image retrieval and
recommendation [[I]- [4]. However, the time complexity of
building a KNN graph is O(n?d) where n refers to the number
of nodes and d represents the dimension of the node property.
Thereby, it is time-consuming especially for large datasets
and numerous efforts [6] [7] have been devoted to reduce
the time complexity. Tree-based algorithms that split the large
datasets into small sub datasets with a tree structure essentially
divide the large global kNN calculation into smaller local
kNN calculation. This approach greatly reduces the amount
of the computation and the data movement, and it has become
one of the main-stream solutions to large graph construction.
Nevertheless, KNN on the sub datasets still requires massive
irregular memory accesses and data movement as the nodes
in the same sub datasets may not be located in continuous
memory space, thus causing severe resource under-utilization
and power consumption on general processors.

For higher performance, customized graph construction ac-
celerators emerge recently. Tigris [9] and QuickNN [10]] tailor
typical graph construction accelerators for 3D perception-
enabled applications using tree-based algorithms. QuickNN

Table I: Efficiency of EFFANNA.

STI0K STIM GTIM ST100M
0.0747 0.0674 0.0799 0.0364

0.5441 09336 0.969 0.9551

Tree Building Phase B Graph Building Phase

=20 Leaf cap=50 Leaf cap = 100

1.0

0.0
‘F ‘F
é)\ é)(\/ 6\'\/ Q®QQ® ,\'\, &,\@«& Q® @ (_,)\ ,(\/ «'\/ Q® QVv
:_)

Arithmetic intensity (FLOPs/Byte)
L3 cache miss ratio

Ratio of
execution time

Fig. 1: Execution time breakdown of graph constructlon.

has the kNN calculation conducted sequentially across the
dataset. However, there is little data reuse among the kNN
calculation of the neighboring points because the kNN is
performed within a leaf node and the neighboring points may
likely be located in different leaf nodes. As a result, the
same points may have to be repeatedly loaded and massive
irregular memory accesses are required. Tigris has the tree
building process performed on CPU, which requires addi-
tional data movement, thus aggravating the memory bandwidth
bottleneck. Moreover, they target at graph construction on
static data and fail to support the dynamic graph update.
Thus, more efficient graph construction accelerator allowing
dynamic update remains highly demanded.

B. Characterization of the Graph Construction

To investigate the characteristics of the graph construction,
we analyze the execution time of graph construction utilized
in EFANNA [7]] over a series of datasets. According to the
execution time breakdown shown in [Fig. 1| we observe that
the graph building phase takes up the majority of the execution
time on all the datasets. In addition, the time distribution of
the graph construction is also affected by the leaf node sizes.
The proportion of the graph building time raises from 82.44%
to 89.46% on average when the leaf node size changes from
20 to 100 for higher graph construction quality.

We leverage the L3 cache miss ratio and arithmetic intensity
(FLOPs/Byte) to further analyze the computing characteriza-
tion of the graph building phase. As shown in[Table 1| the high
cache miss ratio indicates that it operates on a large dataset
with considerable random memory accesses. The arithmetic
intensity is 0.058 FLOPs/Byte on average meaning that a
single FLOP needs more than 10 Bytes memory accesses.
The memory bandwidth requirement goes up to 320GB/s on
a processor operating at 16 FLOPs/cycle with 2GHz clock,
which makes it rather challenging to meet the computation re-
quirements given large amount of irregular memory accesses.
Thereby, we can conclude that graph construction is memory
bound and still needs intensive optimizations.

In addition, we notice that many practical applications such
as e-commerce and social networks have continuous incoming
entities. For instance, Facebook’s social network graph reports
86400 objects/second update in 2013 and Twitter has 143
thousand tweets per second to be updated [5]]. These entities
need to be updated at run-time to the constructed graph
to ensure more accurate prediction. Thus, dynamic graph
update is indispensable and common for graph construction,

Overall structure

3D stacked DRAM I e A . /. ___________GCiM Architecture
Organization /,’ 1 Memory Vaults in DRAM Layers 1) :
K | vaurt1 [vautt2 |- | vault3o | vau3i | S
’ /

& i

< 4 / 1 B

¥ i Slice /)]

-~ Controller | | Controller Controller | | Controller || ,/ | 2

7

N7) ' g

(=}

"%

">
1

£= DRAM Layer J~.

/= Logic Layer - GCiM Accelerator

A
TI nsert
'verti ce

o

s

:
generator :D
Y A,
| Slice Controller

Fig. 2: GCiM hardware architecture.

Mean%
viizd) Y
V(i) @

Slot huffer

Slice Controller

less

Slot buffer
Fig. 3: Mean Spliter.

and it also needs to be addressed in the graph construction
accelerator.

III. GCIM ARCHITECTURE
A. GCiM Overview

In order to accelerate the memory-bound graph construction,
we take advantage of the near-data processing technique to
reduce the data movement across the memory hierarchy, and
build a specialized accelerator GCiM to fully utilize high-
bandwidth 3D DRAM. The overview of GCiM is shown in
It is built on a logic layer over a die-stacked memory
architecture composed of multiple DRAM layers. The stacked
DRAM dies are partitioned into a series of vertical vaults and
there are 32 vaults in our memory module. Each vault operates
at 10GB/s and the entirce DRAM has a total bandwidth of
320GB/s. To fully exploit the vault-level parallelism, GCiM
also needs to be highly parallelized and accesses the different
vaults with a series of slice controllers.

For the purpose of general graph construction acceleration
including online graph update, GCiM divides the whole pro-
cess into three phases: tree building phase, graph building
phase, and graph update phase correspondingly. The tree
building phase is essentially to build a tree structure that can
characterize the general spatial locality of the points in the
dataset. First of all, it randomly selects a dimension yielded by
a random generator and calculates the mean over the dataset
in this dimension with a mean calculator. Then it separates
the points into two subsets with a Mean spliter according to
the result of the Mean calculator. By recursively dividing the
points in the dataset, the dataset can be split into multiple
partitions and organized as a tree structure where points in
the same leaf node are more likely to be close to each other.
The generated tree structure will be stored in the tree buffer,
which facilitates the search of neighbors of any given point
during the graph update phase.

Graph building phase is triggered right after the tree build-
ing phase with which the tree structure is determined. With the

Tree Buffer

Leafset 1

v
T T

Length Max capacity
Fig. 4: Tree Buffer.

tree structure, k nearest neighbors in a leaf node can also be
considered as k nearest neighbors of the entire dataset, so we
can conduct the kNN algorithm with the granularity of a leaf
node in the tree structure instead of the entire large dataset. In
addition, the distance calculation between points in the same
leaf node can also be reused for k£ nearest neighbor search
for all the different points in the same leaf node. Thereby,
we have a distance buffer to record the calculated distance
between points to avoid repeated distance computation. When
the distances are calculated, we have a top K sorter to decide
the k nearest neighbors.

The last stage is graph update phase, which has the newly
incoming points updated to the graph. The first step is to
distribute the incoming points to the leaf nodes of the tree
structure, which is essentially a series of comparison. This
step is done in the tree search module. After the tree search,
graph building phase is invoked for only the updated leaf
nodes which may affect the structure of the resulting graph.
Particularly for the top K calculation, distances between the
original points are stored in the Dist Buffer and they can
be reused for the new Top K processing. The graph update
eventually depends on the change of the top K processing
results.

Leafset 2 I Leafset 3 | Leafset4 | Leafset 5 |

B. GCiM Micro-architecture

1) Tree Building Module(TModule): As the Mean Calcu-
lation is performed on the according point partition instead
of the entire dataset, the Mean Spliter can only start after
the Mean Calculator in the same layer of the tree structure.
The dependency dramatically hinders the pipeline processing.
Nevertheless, the point partitions obtained from the Mean
Spliter can be immediately utilized to retrieve the correspond-
ing features and conduct the Mean Calculation of the next
layer in a pipelined manner with random dimension generated
beforehand, which also avoids repeatedly loading the point
partitions. As for the Mean Calculator, it essentially retrieves
the specified feature dimensions of the corresponding point

Euclidean opt

[_PERowm Prio

PERow1

-7 Vi _-
,’

1 g \

B ; \
-< distance

(a) (b) (c)
Fig. 5: Top K calculator details. (a)Top K calculator. (b)PER
design. (c)single PE structure.

PE1||PE2|--- |PEn|

partition streamed from the Mean Spliter and conducts the
aggregation with an adder tree to match the feature retrieval
throughput. For the Mean Spliter, it loads a specified feature
dimension of a point partition and splits them into two subsets
based on the mean value calculated in the previous stage. The
outputs will be streamed back to the external memory. To
ensure higher bandwidth utilization, the indices are gathered
in buffers and written back in batches as shown in

Internal nodes of the tree mainly include the child node
indices and the partition information. The tree structure is
relatively small, so it can be fully accommodated in the on-
chip buffer i.e. Tree Buffer shown in The leaf node
contains the actual point indices, so its size far exceeds the
on-chip memory and it is usually stored in DRAM. To ensure
parallel accesses without conflicts during the free building
phase, each leaf node is reserved with a fixed amount of
memory space. There will be multiple point partitions in a
layer of the tree structure when the processing moves on.
While the point partitions in the same layer of the tree
are independent, they can be processed in parallel and 32
processing pipelines are implemented for both the inter and
intra partitions for both higher processing throughput and
memory bandwidth utilization as shown in

2) Graph Building Module(GModule): The core of GMod-
ule is a Top K calculator. It conducts the top K calculation
in the granularity of a leaf node. The structure of the Top
K calculator is shown in [Fig. 5[a). It consists of a 2D array
of processing elements (PEs) for the distance calculation and
a priority queue in each row of PEs utilized for the top K
minimum distance searching as proposed in [14]]. In addition,
each row of the PEs is equipped with an adder tree to
enable pipelined Euclidean distance calculation of two points
according to [Fig. 5(b). Since the feature dimension of a point
is usually larger than the number of PEs in a row (PER), the
PEs in PER can maintain high utilization when performing the
distance calculation of a pair of points. On top of the PER, we
further exploit the feature reuse among the different PERs and
illustrate the data flow with an example as shown in
Suppose there are four points in a leaf node and the distance
calculation of the points can be mapped to three PERs. In
cycle 1, V; is loaded to PER; and cached in PEs. In cycle
2, V5 is broadcast to PE R, and PERs, cached in PER,.
Meanwhile, dio is calculated. In cycle 3, V3 is broadcast to
the three PERs, and cached in PE R3, then we can obtain d3
and ds3. In cycle 4, we broadcast Vy to all these PERs and
obtain dy4, dag4, and ds4 accordingly. At the same time, the
output distance in each cycle will be streamed to the following

[J Reused distance |V1

Vi [di2 | di3 | dia
V2 [d21 | d23 | daa
V3 | d31 | d32 | d3s
Va | da1 | da2 | da3

PER2|>
PER3|>

Cycel

1
Cycde2 1 Cycle 4
'

! Cydle 3 E
Fig. 6: Example of Top K Calculator dataflow.

Priority Queue and Dist Buffer for further reuse. Given more
distance calculation, the PERs can be fully utilized. While the
number of PERs is usually smaller than the number of points
in a leaf node, the nodes in a leaf node need to be further
partitioned based on the row of PERs to fit the computing
array and the point partitions will be processed sequentially.
As we need to obtain the Top K of a leaf node instead of a
leaf node partition, the Priority Queue will be reused across
the processing of the different partitions and flushed only when
a new leaf node is processed.

3) Dynamic Graph Construction (DGC): Dynamic graph
construction that has the newly incoming points updated to the
built graph is an important functionality of GCiM. The new
points are streamed to the Tree Search Module to go through
a depth-first search (DFS) of the tree such that the new points
can be distributed to the corresponding leaf nodes of the tree
structure by comparing to the mean value in each node of the
tree. For the DFS, only one comparison is required in each
layer of the tree and the tree structure is stored in on-chip
buffer i.e. Tree Buffer, so the tree search is fast. When the
new nodes are updated, we will invoke the Top K calculation
on only the updated leaf nodes. Since the distances between
nodes in the original leaf nodes are already calculated and
stored in memory, they can be reused directly and we only
calculate distance relevant to the new points. Essentially, DGC
reuses the major modules in GModule.

C. Data Layout Optimization

The data layout greatly affects the memory access pattern
of GCiM and has substantial influence on the performance
and energy consumption of the memory-bound graph con-
struction on GCiM. Thus, we attempt to optimize the data
layout especially the features of the datasets for efficient
graph construction in this subsection. The majority of the
memory accesses are from the Mean Calculator and the Top K
Calculator of the accelerator according to previous discussion.
The Mean Calculator needs to read value of a specific feature
dimension based on the indices of the points located in a leaf
node of the tree structure. Hereby, it prefers to have the point
features stored with dimension-major layout (DML) and then
split into different vaults to enable parallel accesses. Different
from the Mean Calculator, the Top K calculator is mainly
determined by the large number of the distance calculations
and needs the entire features of the points. Thereby, vertex-
major layout (VML) that has the entire point feature stored
sequentially in the same vault and different point features
distributed across vaults is more efficient. To achieve higher
overall performance of the graph construction, we have a

Table II: ANN Datasets.

Dataset | STIOK STIM GTIM ST10M ST100M
Vectors 10,000 1,000,000 1,000,000 10,000,000 100,000,000
Dimension 128 128 960 128 128

mixed data layout to balance the processing of the two I/O-
intensive hardware modules. The basic idea is to divide both
the feature and points into partitions and distribute them into
the 3D stacked memory vaults. The exact partition strategy
depends on the overall memory access efficiency which can
be approximated with the amount of memory accesses of the
two hardware modules and the corresponding memory access
efficiency under different memory access granularity. Note that
memory access efficiency can be obtained with offline testing.

IV. EVALUATION
A. Experimental Setup

We built a cycle-accurate simulator to measure the perfor-
mance of GCiM accelerator and a RTL design synthesized
with Synopsys Design Compiler (DC) in TSMC 14nm process
technology. The accelerator is implemented on the logic layer
stacked on a 3D memory module and works at 400 MHz. The
DRAM module is divided into 32 vaults with a total internal
bandwidth of 320GB/s. Finally, the power of the 3D memory
is estimated with the simulator proposed in [[15]].

Due to the lack of general graph construction accelerator, we
compared GCiM with state-of-art implementations including
EFANNA [7] and Faiss [8] on CPU and GPU respectively.
EFANNA utilizes the same tree-based algorithm while Faiss
adopts k-means for similarity establishment. CPU platform is
equipped with Intel Xeon Gold 5217@3.0GHz processor and
256GB DDR4. GPU platform is equipped with NVIDIA Telsa
V100 SXM2 and 32 GB HBM2. The datasets utilized are listed
in and their sizes range from 10K to 100M [16].

B. Experimental Results

1) Power & Area: We have GCIM configured with 32
processing pipelines in TModule. GModule is equipped with
64 PERs each of which has 32 PEs. 32bit fixed point MAC
is utilized in each PE. Each Slot buffer in the Mean Spliter
contains at most 512 points and the total capacity of the slot
buffers is 128KB. Tree Buffer is determined by the number
of nodes in the tree structure and it is set to be 128KB
to meet the requirement of the largest dataset utilized in
the experiments. Dist Buffer is mainly utilized as a write
buffer to enable batch write to the memory and it is set to
be 4KB. In summary, the total amount of on-chip buffer is
260KB. The data path of TModule and GModule with a large
processing array dominates the chip area. Total chip area is
1.928mm? and the power consumption is 1.527W in TSMC
14 nm technology.

2) Performance: We compare the performance of GCiM
with the baselines including EFANNA and Faiss in CPU and
GPU respectively. The number of points in each centroid
for Faiss and leaf size for EFANNA and GCiM is 1000.
K is set to be 10. For EFANNA, it is accelerated with
both AVX instructions and multi-thread optimizations. The
performance comparison is shown in [Fig. 7(a). It reveals that

GCiM/CPU-1thread I GCiM/CPU-8thread M GCiM/GPU
104
S 103
T 102
[]

Energy
reduction

0
ST10K ST1IM GT1M ST10M 0 ST10K ST1IM GT1M ST10M
(a) (b)
Fig. 7: (a) Performance speedup over CPU and GPU. (b) Energy
reduction over CPU and GPU.
—— leaf cap=100
108

leaf cap=50 —@— leaf cap=20

Throughput
(vertices/s)
=
2

-4
1 4 16 64 256 1 4 16 64 256

batch size batch size
(a) (b)

Fig. 8: (a) Throughput in DGC. (b) Graph update latency.
the average performance speedups of GCiM are 634.64X,
215.02X, and 53.29X over CPU-1thread, CPU-8threads, and
GPU implementations respectively. In addition, GCiM shows
higher performance speedup on the largest dataset i.e. ST10M.
In contrast, Faiss fails due to the out of memory error on
ST10M in GPU. EFANNA with multi-thread optimization
prefers larger datasets and the performance even drops on
smaller datasets because of the muti-thread synchronization
overhead, Nevertheless, EFANNA with 8 threads achieves
only 2.95X performance speedup compared to the single
thread implementation, which shows limited scalability. Unlike
EFANNA and Faiss, GCiM is less sensitive to the datasets
and the scalability of GCiM will be further investigated in the
following subsection.

3) Energy Consumption: The power consumption of CPU
and GPU is obtained from Likwid and NVPROF respectively,
and the power consumption of GCiM is estimated using
Synopsys DC. The energy consumption comparison is shown
in [Fig. 7(b). GCiM achieves about 1470.7X, 619.72X and
442.56X less energy consumption compared to CPU-1thread,
CPU-8thread and GPU. On top of the execution advantage,
the great energy consumption reduction is mainly attributed
to the unified customized GCiM accelerator with much less
computation and memory access redundancy that benefits from
the computing order optimization and data layout optimiza-
tion. These optimizations will be evaluated in the following
subsection.

4) Dynamic Graph Construction: As for the dynamic graph
construction, it concerns both the graph update latency and
graph update throughput. The update latency shows how fast
a new data can be updated to the graph while the update
throughput exhibits how efficient new nodes can be updated
to the graph. The two metrics can be contradictory and the
requirements of the two metrics may vary under different
scenarios. They can be adjusted with update batching as shown
in the where we randomly inserted 1K points into
the STI0K dataset. When a set of points are batched for the
update, the inspection of the new points with the tree structure
can be pipelined. Meanwhile, with the batch processing,
multiple new points may be located in the same leaf node

—8—|eaf cap = 20 leaf cap = 50 ——leaf cap = 100 leaf cap = 200

150

%6100

8%

(%] L

g_g 50
¢ 0

Fig. 9: Comparison between ISO and LGO over performance
and io reduction.
TModule

I GModule B TModule+GModule

. “w v

g100 g 10°

8107f------8----- o 108

1*] Ulo7

S105lm-m wll w

£ £ 106
|10 S108 S10°
€ VML FML MDL § VML FML MDL § VML FML MDL
o o o

(a) ST10K (b) STIM (c) GTIM
Fig. 10: # of random memory accesses issued from the major
modules of GCiM under different data layouts and datasets.
of the tree. In this circumstance, the feature of old points can
be reused to perform top-K calculation of the corresponding
leaf node especially the distance calculation and thus acquire
high computation unit utilization. The update throughput can
be improved accordingly and gets saturated when PERs are
fully utilized as shown [Fig. 8[a). In contrast, the graph update
latency increases with the batch size but much more smoothly
before the computing resources especially the PERs are used
up at batch 64. In addition, we observe that the leaf node size
also affects the graph update latency and throughput. Gener-
ally, smaller leaf node size requires less distance calculation
and thus exhibits lower latency and higher throughput.

C. Optimizations

1) Top K processing order comparison: An intuitive ap-
proach of the top K calculation is to process the points
in index sequential order (ISO). In this work, we propose
to conduct the top K calculation in leaf granularity order
(LGO) and the points in the same leaf node will be processed
together for the sake of better data reuse. The two different
processing approaches are compared in It can be
observed that LGO achieves averagely 1.86X performance
speedup compared to ISO. The main reason is that ISO needs
to load the same feature of a point multiple times when the
point is a potential neighbor of different nodes with indices far
from each other. In contrast, LGO has the points in the same
leaf node processed in parallel. As these points are potential
neighbors and are required by each other for the distance
calculation, the processing has much better data locality and
less memory accesses accordingly as presented in In
addition, we observe that the size of the leaf node also greatly
affects the reduction of the memory accesses and larger leaf
nodes offer more optimization space in general.

2) Data layout optimization: In this experiment, we compare
the proposed mix data layout (MDL) with other two traditional
layouts i.e. vertex-major layout (VML) and dimension-major
layout (DML) as described in Sec [lI-C| When the data in the
memory are sequentially accessed, the memory bandwidth is
fully utilized despite the data layouts. In contrast, the number
of random memory accesses is the direct reason that leads to

the different memory bandwidth utilization or memory access
efficiency. Hereby, it can be used as the metric to compare
the efficiency of the three graph layouts. As shown in [Fig. 10}
VML is mainly favored by the GModule that needs to read
the entire point feature for distance calculation while DML is
preferred by TModule that frequently read a specific dimension
of the features for the mean calculation. Nevertheless, they
may cause considerable random memory accesses on the other
module of GCiM. Different from the two baseline layouts,
GCiM has a hybrid data layout to balance the preference of
both modules with total 28.5% and 96.7% random memory
accesses reduction compared to VML and DML respectively.

V. CONCLUSION

In this paper, we proposed an in-memory graph construction
architecture GCiM for the first time, which can be scaled to
large real-world applications. The architecture fully exploits
the in-memory parallelism of a 3D stacked memory and
investigates the computation reuse and data locality with data
layout optimizations. In addition, it also supports quick online
graph construction for evolving graphs. Experiment shows that
GCiM achieves 634.64X and 53.29X performance speedup
and 1470.7X and 442.56X energy efficiency improvement on
average compared to CPU and GPU respectively.

ACKNOWLEDGEMENT

This paper is supported in part by the National Key
Research and Development Program of China under grant
2020YFB1600201, and the National Natural Science Founda-
tion of China (NSFC) under grant No.(62090024, 61876173,
61902375). Lei He and Cheng Liu made equal contributions.
The corresponding authors are Ying Wang and Huawei Li.

REFERENCES

[11 W. Liu er al., “Large graph construction for scalable semi-supervised
learning,” in /CML, 2010.

[2] Kemelmacher-Shlizerman et al., “Exploring photobios,” TOG, 2011.

[3] S. Arya et al., “Approximate nearest neighbor queries in fixed dimen-
sions,” in SODA, 1993.

[4] C. Fu et al., “Fast approximate nearest neighbor search with the navi-
gating spreading-out graph,” arXiv preprint arXiv:1707.00143, 2017.

[5] D. Sengupta et al., “Graphin: An online high performance incremental
graph processing framework,” in Eur-Par. Springer, 2016.

[6] W. Dong et al., “Efficient k-nearest neighbor graph construction for
generic similarity measures,” in WWW, 2011.

[7]1 C. Fu et al., “Efanna: An extremely fast approximate nearest neighbor
search algorithm based on knn graph,” arXiv:1609.07228, 2016.

[8] J. Johnson et al., “Billion-scale similarity search with gpus,” arXiv
preprint arXiv:1702.08734, 2017.

[9]1 T. Xu et al., “Tigris: Architecture and algorithms for 3d perception in

point clouds,” in IEEE Micro, 2019.

R. Pinkham et al., “Quicknn: Memory and performance optimization of

kd tree based nearest neighbor search for 3d point clouds,” in HPCA.

IEEE, 2020.

A. Ching et al.,, “One trillion edges: Graph processing at facebook-

scale,” PVLDB, 2015.

S. H et al., “A hardware processing unit for point sets,” in HPG, 2008.

V. Lee et al., “Application-driven near-data processing for similarity

search,” arXiv preprint arXiv:1606.03742, 2016.

S. Moon et al., “Scalable hardware priority queue architectures for high-

speed packet switches,” TC, 2000.

[15] F. Schuiki et al., “A scalable near-memory architecture for training deep

neural networks on large in-memory datasets,” 7C, 2018.

A. Laurent et al., http://corpus-texmex.irisa.fr/.

(10]

(11]

[12]
[13]

[14]

[16]

http://corpus-texmex.irisa.fr/

	Introduction
	Background and Motivation
	Related Work on Graph Construction
	Characterization of the Graph Construction

	GCiM Architecture
	 GCiM Overview
	GCiM Micro-architecture
	Data Layout Optimization

	Evaluation
	Experimental Setup
	Experimental Results
	Optimizations

	Conclusion
	References

