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Abstract—Graph neural networks (GNNs) emerge as a powerful approach to process non-euclidean data structures and have been
proved powerful in various application domains such as social networks and e-commerce. While such graph data maintained in
real-world systems can be extremely large and sparse, thus employing GNNs to deal with them requires substantial computational and
memory overhead, which induces considerable energy and resource cost on CPUs and GPUs. In this work, we present a specialized
accelerator architecture, EnGN, to enable high-throughput and energy-efficient processing of large-scale GNNs. The proposed EnGN
is designed to accelerate the three key stages of GNN propagation, which is abstracted as common computing patterns shared by
typical GNNs. To support the key stages simultaneously, we propose the ring-edge-reduce(RER) dataflow that tames the poor locality
of sparsely-and-randomly connected vertices, and the RER PE-array to practice RER dataflow. In addition, we utilize a graph tiling
strategy to fit large graphs into EnGN and make good use of the hierarchical on-chip buffers through adaptive computation reordering
and tile scheduling. Overall, EnGN achieves performance speedup by 1802.9X, 19.75X, and 2.97X and energy efficiency by 1326.35X,
304.43X, and 6.2X on average compared to CPU, GPU, and a state-of-the-art GCN accelerator HyGCN, respectively.

Index Terms—Graph neural network, accelerator architecture, hardware acceleration.
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1 INTRODUCTION

R ECENTLY, the success of deep learning methods in
many fields has provoked a keen interest in general-

izing neural network architectures to non-Euclidean data,
such as manifolds and graphs. However, traditional deep
neural networks, such as convolutional neural network
(CNN) [1], long short term memory (LSTM), are pro-
posed to work for regular grid-like structures in Euclidean
space, they are not trivially portable to non-Euclidean data
domains like graphs. Therefore, graph neural networks
(GNNs) are recently emerging as a powerful approach for
graph processing and achieving unparalleled performance
on many classic graph processing tasks, such as citation
network [2], social networks [3], and knowledge graph [4].
The success of graph neural networks propelled the de-
ployment of GNNs to the real-world production system.
For example, Alibaba’s AliGraph [5] and Euler [6] platform
leverage GNNs to analyze the e-commerce graph data of
billion users and items.

The prosperity of GNNs is enabling the development
of emerging AI applications and systems that require high-
throughput and low-latency processing capability. For in-
stance, a recommendation system in Taobao [6] that lever-
ages GNNs to mine billion-scale e-commerce data needs
to perform real-time recommendations to millions of cus-
tomers shopping at the same time. Therefore, to ease
GNN model development and deployment, some high-
performance GNN processing frameworks, such as Deep
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Graph Library (DGL) [7], Pytorch Geometric (PyG) [8], and
Neugraph [9] have been developed because the existing
deep learning frameworks and graph processing frame-
works cannot fulfill large graph-based neural networks [9].
However, the potential performance and energy efficiency
of GNNs are still bounded by the hardware architectures
assumed by these frameworks. The major drawbacks are
attributed to three-fold factors. First, compared to DNNs
with regular computing patterns, GNNs inherit both the
irregular processing dataflow of graph analytic and the
regular computing pattern of DNNs. This hybrid computing
pattern that involves large amount of dynamic and irregular
data accesses results in the inefficiency of the CPU and
GPU. Second, a real-world graph can be extremely huge. For
instance, the e-commerce graphs in Alibaba contain billions
of nodes and hundreds of billion edges with rich attribute
information. Some GNN software frameworks generally
adopt a large number of compute nodes equipped with
multiple CPUs or GPUs to deal with large-scale graphs, thus
it results in high cost and energy overhead. For example,
NeuGraph uses eight GPUs to handle a dataset with million
vertices [9]. Third, the power-law distribution of the big
real-world graph challenges the existing memory hierarchy
and caching policy of CPUs and GPUs, for the sparsely
distributed low-degree vertices in the graphs make it hard
to reuse the graph data in general-purpose processors.

Intuitively, specialized hardware architecture is a
promising option to improve the efficiency of GNN. How-
ever, previous graph processors and neural network accel-
erators are optimized to support either graph processing or
neural networks, rather than both of them simultaneously.
To address this problem, prior work proposed HyGCN to
combine the graph processing and neural network process-
ing in a specified hardware architecture. However, HyGCN
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mainly targets at graph convolution network (GCN) and
utilizes a systolic array to perform neural network compu-
tation operation inside GCN, which is the target workload
evaluated in their work, and it is not designed to run
general GNN architectures like graph recurrent network,
graph attention network, etc. This is because the systolic
array adopted by HyGCN is subject to low resource uti-
lization when handling GRN with GRU or LSTM unit. In
addition, the inherent nature of the real-world large-scale
graph adopted by the GNN model, such as power-law
distribution, variable feature length of vertex, significantly
impacts the performance of GNN model and it leaves a large
potential space to optimize the data locality, on-chip mem-
ory hierarchy, task partitioning, and scheduling. Neverthe-
less, HyGCN does not consider such inherent features of the
graph, which dramatically limits the achieved performance
and energy efficiency.

Therefore, in order to solve the aforementioned issues
and accelerate practical GNN-based applications that pro-
cess real-world large-scale graphs, we propose EnGN, a
high-throughput and energy-efficient edge-centric acceler-
ator for large graph neural network processing. However,
designing such an accelerator is a non-trivial task and has
to resolve the obstacles that exist in the real-world GNN
algorithms: (1) How to tailor a unified architecture that
efficiently supports the diverse GNN models and flows not
limited to GCNs. It is observed that the dataflow and the
dimension of the working-set, e.g., the vertex, dynamically
changes in wide ranges during the propagation of different
GNN layers, requiring a reconfigurable architecture and
interconnects to avoid hardware and memory bandwidth
under-utility. (2) large graphs containing millions of vertices
pose a significant challenge to the design of energy-efficient
and compact GNN accelerators with limited on-chip mem-
ory space. Particularly, when massive graphs with million
vertices are partitioned into sparsely-connected sub-graphs,
there will be intensive random and irregular off-chip mem-
ory accesses induced, which leads to poor locality that are
hard to harness in the aggregate and update stage. And
(3) the power-law distribution [10] creates high-degree but
imbalanced connection sparsity in large real-world graphs.
Accelerator must be able to deal with the imbalanced spar-
sity distribution, which leads to processing elements under-
utility, poor locality, and redundant memory access issues
in hardware.

To cope with issues, first, by observing state-of-the-art
GNN processing frameworks such as DGL and PyG, we
generalize the architecture of typical GNN algorithms into
three key stages: the vertex feature extraction stage, the
feature aggregate stage, and the graph update stage. In re-
sponse to the three key stages abstracted from general GNN
frameworks, we support the corresponding computing pat-
terns in EnGN, so that it is a general GNN processor and
able to support most of the GNN architectures such as GCN,
GRN, etc. In EnGN, a ring-edge-reduce (RER) dataflow and
the accompanied hardware architecture of RER process-
ing elements (PEs) arrays are designed to simultaneously
conduct the stages of vertex property feature extraction,
aggregate, and vertex update on GNNs. It is known that ag-
gregating the property and updating the vertices distributed
in the large but sparse graphs will lead to poor hardware

resources and memory bandwidth utilization due to poor
data locality of vertices and edges. However, the proposed
RER PEs connected into a ring topology leverages the RER
dataflow to make vertex property flow between rows of PEs
and performs efficient update operations without randomly
accessing the vertices and edges from the memory.

Second, for the feature extraction stage, EnGN constructs
a graph property aware dataflow (GPA) that decouples
the vertex property and the hardware structure, which
makes the GNN mapping to the RER array independent
of the vertex dimension. In addition, we observe that the
computational overhead of GNN models is sensitive to
the vertex-property dimension and also the order of the
GNN processing stages. Based on this observation, EnGN
is designed to enable the processing reordering based on
the model architecture such that the overhead of the GNN
inference can be reduced and higher performance can be
achieved.

Third, considering the footprint of large-scale graphs,
EnGN adopts a graph tiling strategy to process the par-
titioned sub-graphs with high degree of data reusability.
Graph tiling aims to partition a large-scale graph into sub-
graphs that fit the on-chip memory and maximize the lo-
cality. The tiles are strategically scheduled in EnGN to select
either row-oriented or column-oriented processing dataflow
to maximally reuse vertices between tiles and reduce the
overhead caused by the off-chip memory access.

Finally, due to the power-law distribution and sparsity
characteristics of the real-world graphs, the accessing fre-
quency to different vertices may vary in a large scale. For
example, on Cora citation graph [2], the access frequency
of a high-degree vertex is 100X than that of a low-degree
vertex, which causes access imbalance issue. Thus, EnGN
comprises a three-level on-chip memory hierarchy, and the
L2 memory is a degree-aware vertex cache (DAVC) to locally
cache the high-radix vertices that are densely connected
to other vertices in graphs. DAVC reduces considerable
memory access cost. In summary, our main contributions
are the following:

1) A compact but high-throughput accelerator is designed
for large graph neural network, which is implemented
based on the edge-centric paradigm and supports vari-
ous large scale GNNs.

2) We proposed a graph property aware and ring-edge-
reduce (RER) dataflow to enable the EnGN to handle
a vertex with arbitrary dimension property and high
throughput GNN operations. The on-chip memory hi-
erarchy is designed to be aware of the non-uniform
distribution of high-radix and low-radix graph vertexes
and employ a specialized memory space management
to enhance data locality on the chip.

3) We implement the EnGN accelerator in 14nm process
and make comprehensive evaluations and compare the
performance, power, energy of EnGN to CPU, GPU,
and HyGCN baselines. Experimental results show that,
compared to CPU and GPU, EnGN achieves on average
1802.9X speedup with 1326.35X energy reduction and
19.75X speedup with 304.43X energy reduction, respec-
tively. The speedup and energy efficiency of EnGN is
shown to be 2.97X and 6.2X higher than HyGCN, which
is a contemporary work of EnGN on GNN accelerator.
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TABLE 1: GNN algorithms on EnGN processing model.
Algorithms Feature extraction Aggregate Update

GCN hl
u ∗ V

−1/2
degree V l

temp = acculumate(Res) ReLu(W lV l
temp)

GS-Pool ReLu(W l
poolh

l
u + b) V l

temp = max(Res) ReLu(W lconcat(V l
temp, h

l
v))

Gated-GCN Sigmoid (W l
Hhl

v +W l
Chl

u) � hl
u V l

temp = acculumate(Res) ReLu (W l V l
temp)

GRN hl
u V l

temp = acculumate(Res) GRU(h
(l)
v , W l V l

temp)

R-GCN hl
r,u ∗ V

−1/2
degree V l

r,temp = acculumate(Res) ReLu(
∑

r∈R W l
rV

l
r,temp)

TABLE 2: Notations.
Notations Descriptions Notations Descriptions

G Graph G = (V,E) IN Identity matrix
V Vertices of G D̃ii D̃ii =

∑
j Ãij

E Edges of G Ã Ã = A + IN
A Adjacency matrix W l Weights at layer l
X Vertices property of G b Bias vectors
hl
v Source vertex v property at layer l Concate()Concatenate function

hl
u Destination vertex u property at layer l Nv Neighbor set of vertex v

2 GENERAL GNN PROCESSING MODEL

2.1 Graph neural networks

Unlike CNNs that mainly deal with Euclidean data like
images and videos [9], graph neural networks (GNNs) gen-
eralize the CNN to operate directly on non-Euclidean data
especially graph data such as social networks and chemical
molecules. It has been proven to be supremely successful
on tasks like node classification, graph classification, and
link prediction. Motivated by the success of GNNs, various
GNN architectures have been proposed recently [11], [12].
Table 2 lists the notations used in this paper.

Graph convolution network (GCN) generalizes the
convolution operation from regular image data to non-
structural graph data. It can be used for node classifica-
tion [2] and chemistry molecules architecture analysis [13].
A typical GCN [2] is presented and formulated in Eq. 1:

hl+1 = ReLu(D̃−1/2ÃD̃−1/2hlW l), h0 = X (1)

GraphSage-Pool (GS-Pool) is proposed in [14] and used
for citation network analysis and protein-protein interaction
task. Unlike the GCN models, it leverages the averaging
function as an aggregation operator and has the source
vertex property (hlv) involved when updating output in next
iteration. The expression of GS-Pool is defined in Eq. 2.

hl+1
v = ReLu(W lconcat(ReLu(W l

poolh
l
u + b)), hl

v) (2)

Gated graph convolution network (Gated-GCN) is
proposed in [15] and utilized for community detection.
It borrows the idea from gate recurrent neural networks
and constructs a propagation function that receives and
processes the property of source and destination vertex si-
multaneously. The propagation function is depicted in Eq. 3.

h(l+1)
v = Relu (W l(

∑
u∈N(v)

ηuv � hl
u)

ηuv = Sigmoid (W l
Hh

l
v +W l

Ch
l
u)

(3)

where � refers to element-wise multiplication, ReLu(·) and
sigmoid(·) are typical nonlinear activation functions that
have been widely adopted in CNNs [1].

Graph Recurrent network (GRN) is similar to the recur-
rent neural network (RNN), but aims to learn vertex rep-
resentations [16]. GRN is mostly used in NLP tasks, traffic
forecasting, etc. For example, [17] integrates typical RNN
units (Gated recurrent unit) into the propagation function
as formulated in Eq. 4 to perform graph learning tasks.

h(l+1)
v = GRU(h(l)

v ,
∑

u∈N(v)

W lhl
u) (4)

Relational graph convolutional network (R-GCN) is an
extension of GCN and used to handle graphs with different
edge types. For instance, the edges can be used to represent
different relations and have distinct weights definition of
W l

r [18]. Similar to GCN, hidden representation of entities
in the (l + 1)th layer in R-GCN can be formulated in Eq. 5:

hl+1
i = σ(W l

0h
l
i +

∑
r∈R

∑
j∈Nr

i

1

ci,r
W l

rh
l
j) (5)

where Nr
i denotes the set of neighbor indices of node i

under relation r ∈ R and ci,r is a normalization constant.
ci,r = |Nr

i | is used in prior entity classification work [18].
Although GNN algorithms are different in terms of ar-

chitecture and target applications, we notice that they share
common computing patterns. 1) GNNs initially condense
vertex property of source vertex with learned parameters to
obtain more compact feature representations. 2) Afterwards,
GNNs usually gather neighbor properties to embed the
information of graph topology to the extracted features. and
3) GNNs usually leverage learned parameters to condense
the output features obtained in the aggregate stage making
GNN capable to learn and perform more complex tasks.
GNN accelerators must be able to support the computation
abstractions concluded above, in order to support different
GNN architectures efficiently.

Algorithm 1 EnGN processing model
Input: Graph G = (V,E), Vertex property Prop and Tmpprop, layer l, learned

parameter Wfeature,Wupdate

Output: Vertex Property Result
1: for l← 1 to lmax do
2: for each edge e ∈ Edge do
3: tmp← Feature extraction(Prop[e.src], Prop[e.dst],Wfeat.)
4: Tmpprop[e.dst]← Aggregate(Tmpprop[e.dst], tmp)
5: end for
6: for each edge e ∈ Edge do
7: Prop[e.dst]← Update(Prop[e.dst], Tmpprop[e.dst],Wupdate)
8: end for
9: end for

10: Result← Prop

2.2 EnGN processing model

According to the goal of the key stages in a typical GNN,
the common computing patterns can be abstracted as feature
extraction, aggregate, and update. The feature extraction stage
condenses the property of each vertex in the graph using a
neural network. The aggregate stage embeds the graph topol-
ogy into local vertex property by accumulating each vertex’s
neighbor properties generated in the feature extraction. The
choices of aggregate functions include various arithmetic
operations such as max, min, and add to produce unified
output features. At the end of propagation iteration, the
update stage leverages learned parameters to further con-
dense the output features obtained in the aggregate stage,
then applied a non-linear activation function or GRU/LSTM
function to each vertex of the graph before output. Note that
when the aggregate stage includes only linear operation, it
can be scheduled before or after the feature extraction stage.
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Fig. 1: GCN on EnGN processing model.

It also provides an opportunity for EnGN to dynamically
adjust the stages of matrix operations to optimize EnGN
performance, which will be introduced in section 5. On
top of the abstraction, we propose a unified EnGN pro-
cessing model that can cover general GNN models using
the common computing functions as shown in Algorithm 1.
Suppose the graph is represented as G(V,E) where V and
E represent the set of vertices and edges in the graph
respectively. Property is the set of vertex property of the
graph. By default, the input graph is stored as a coordinate
list (COO). Each edge in the graph is a tuple (src, dst,
val), where val usually stands for the edge property and
it depends on graph definition. The EnGN execution flow
follows the neighborhood aggregation strategy, which itera-
tively updates the representation of vertices by aggregating
representations of their neighbors. Since all the vertices in
the graph will be processed in each iteration for GNN
algorithms, EnGN is presented as an edge-centric processing
model to ensure more efficient memory accesses [19].

For each edge, both the source vertex property and the
destination vertex property are condensed with Wfeature

using feature extraction(·) to obtain a temporary prop-
erty tmp. Then tmp is added to the destination property
using aggregate(·) function. Since there may be multiple
edges that are incident to the same destination vertices,
aggregate(·) is essentially a reduce function. When all the
destination vertices are reduced, an activation function or
the user-defined operator with learnable weights Wupdate

are used to filter the output using update(·) function.
To help understand the EnGN execution model, we

present a vivid example of GCN [2] processed by the EnGN
architecture as shown in Fig. 1. Suppose an input social
network graph G has four vertices (users) and its edges rep-
resent the relation between users. Each vertex (user) attaches
a 5-dimensions property (embedding vector) which is a
learning representation of user information such as age and
gender. Dimension usually stands for the length of the em-
bedded user property. The input property of the vertices are
denoted as Xv0 , Xv1 , Xv2 , Xv3 . In feature extraction(·)
function, the feature extraction function takes both the ver-
tex property, i.e., Xv0 , Xv1 , Xv2 , Xv3 and associated weight
matrix Wfeature as input. Then it has the weight matrix
multiplied with the high-dimension input vertex property
to generate low-dimension temp features. Note that the
size of the weight matrix is associated with both the input
property dimension and output temp feature dimension. In
this example, the size of the weight matrix is 5 × 3. With
the feature extraction function, the input vertex properties
are converted to 3-dimension temp features donated as
P v0 , P v1 , P v2 , P v3 . In aggregate(·) function, it receives the
results of feature extraction function and aggregates the
property of each vertex’s incoming neighbors. As shown
in Fig. 1, the temp properties of vertex 2 and 3, i.e., P v2 ,

R
a
ti
o
o
f

e
x
e
c
u
ti
o
n
ti
m
e Feature extrac�on Aggregate Update

GCN GS-Pool Gated-GCN GRN R-GCN

C
A

P
B

C
F

R
D

C
A

P
B

C
F

R
D

C
A

P
B

C
F

R
D

C
A

P
B

C
F

R
D A
F

M
G

B
G

A
M

0.0

0.5

1.0

Fig. 2: Execution time breakdown of GNN models.

C
A

P
B

C
F

R
D S
A

C
A

P
B

C
F

R
D S
A

C
A

P
B

C
F

R
D S
A

C
A

P
B

C
F

R
D S
A

A
F

M
G

B
G

A
M

0.0

0.5

1.0

R
a
ti
o
o
f

e
x
e
c
u
ti
o
n
ti
m
e Feature extrac!on Aggregate Update

GCN GS-Pool Gated-GCN GRN R-GCN

O
u

t 
o

f
m

e
m

o
ry

Fig. 3: Execution time breakdown of GNN models on GPU.
P v3 are added to temp property of vertex 0 as vertex 2
and 3 are incoming neighbors of vertex 0 P v0 according
to the graph topology. When the aggregation stage is done,
update(·) starts. It has the vertex features, i.e., Sv0 , Sv1 , Sv2 ,
Sv3 filtered using an activation function. The filtered output
properties denoted as Ov0 , Ov1 , Ov2 , Ov3 become the input
to the next iteration.

Similar to the GCNs, we also have the rest of the typical
GNN algorithms mentioned in section 2 mapped to the
EnGN processing model. Table 1 summarizes the resulted
EnGN processing functions.

3 MOTIVATION

3.1 Workload characterization
To gain insight into the computing characteristics of GNN
processing models, we leverage a state-of-the-art GNN soft-
ware framework, DGL, to analyze the five aforementioned
GNN models on Intel Xeon CPU and NVIDIA V100 GPU.
Fig. 2 and Fig. 3 shows the execution time breakdown
of GCN, GS-Pool, Gated-GCN, GRN, and R-GCN on the
datasets that are selected from Table 6. Note that GCN, GS-
Pool, Gated-GCN, and GRN executed on datasets of CA,
PB, CF, RD, and SA (GPU) while R-GCN is mainly used
in the knowledge graph and it works on open datasets
including AF, MG, KG, and AM. In general, it can be
observed that the three processing stages including feature
extraction, aggregate, and update take up a distinct propor-
tion of the execution time on different datasets. Thereby,
all the processing stages must be taken into consideration
for general GNN acceleration which remains a great design
challenge. On the other hand, we observe that the aggregate
stage that requires computing and traverse of the graph
data involves considerable irregular memory accesses and
consumes a large portion of the total execution time on
datasets of CA, PB, and RD for algorithms of GCN, GS-Pool,
and Gated-GCN. Particularly, the aggregate stage of R-GCN
on all the datasets turns out to be the most time-consuming
stage. To further investigate the reasons for the processing
inefficiencies of the aggregate processing stage, we analyze
the statistics of the CPU processing system executing GNNs
as listed in Table 3. The results reveal that the aggregate
stage has the lowest instructions per cycle (IPC) due to
the much higher cache miss rate and memory bandwidth
requirements, which are mostly incurred by the intensive
irregular memory accesses. According to the I/O to com-
puting ratio metric, i.e., memory accesses per operation in
the table, we also confirm that the aggregate stage involves
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TABLE 3: Execution pattern of GCN on Cora dataset.
Feature extraction Aggregate Update

IPC 1.73 0.77 1.01
L3 cache miss ratio 56.60 82.62 46.47

CPU stalls caused by
memory loads 15.16 40.8 30.15

DRAM Bytes pre Ops 0.24 11.1 0.41

intensive memory accesses per operation. In a nutshell, the
aggregate stage closely relevant to the irregular graph is the
most critical part of GNN processing in most cases. It is an
IO-bound task and must be optimized sufficiently for high-
performance GNN processing.

As GNNs operate on large attributed graphs and the
graph structures including input feature dimension, output
feature dimension (corresponding to GNN architecture) af-
fects the execution dramatically, we take GCN as an example
and further evaluate how these graph features affect the
execution time of GNN. Note that a synthetic graph that
can be scaled for the evaluation is utilized in the experiment.
The experimental result is presented in Fig. 4. It reveals that
the GNN execution time increases with both larger input
feature dimension and output feature dimension while the
execution time is more sensitive to the input feature dimen-
sion. For instance, when input feature dimension changes
from 64 to 1024, the execution time increases by 2.21X. How-
ever, it increases by only 1.32X when the output feature goes
up from 64 to 1024. Meanwhile, we observe that the graph
convolution operation can be symmetric in aggregate with
sum operator cases and we may exchange the input feature
dimension and output feature dimension. The proof will
be detailed in section 5. With these observations, we may
improve the computing efficiency by exchanging the input
and output features without affecting the GNN processing.

3.2 Hardware architecture for GNNs

The state-of-the-art graph learning frameworks such as
DGL, PyG essentially rely on general purposed processors
(GPPs), i.e., CPU and GPU. Nevertheless, GPPs especially
GPUs fail to take advantage of a large amount of parallel
processing engines on GNNs that involve a large amount of
irregular traverse and computing over large sparse graphs.
As a result, GPUs suffer workload imbalance, memory
divergence, and branch divergence for GNN processing
[20], [21], [22]. Unlike GPPs, specialized hardware accel-
erators promise to offer energy-efficient processing for a
specific domain of applications such as neural networks
and graph processing. Nevertheless, neither neural network
accelerators nor graph processing accelerators can process
GNNs with combined neural network processing (feature
extraction) and graph processing (aggregate and update). In
addition, even for the graph processing part, existing graph
processing accelerators assume simple graph structure with
fixed scalar feature while the graphs utilized in GNNs usu-
ally have much more complex attributes and the attributes
change across the different GNN layers, which poses more
pressure to the on-chip data buffering and memory access
optimization.

Instead of reusing existing hardware architectures for
graph convolution network, the authors proposed HyGCN,
a specialized accelerator for GCN processing. They take
the hybrid computing pattern of GCN [21] into consider-
ation and have separate processing modules for the neural

64 128 256 512 102432

64

128

input feature length

E
x
e

cu
!

o
n

!
m

e
(m

s)

64 128 256 512 1024output feature length:

Fig. 4: Execution time of GCN model on graph with 0.25M
vertices and 0.96M edges w.r.t input/output feature length.
network processing and graph-like computing respectively.
Nevertheless, HyGCN still fails to unleash the potential of
the GNN acceleration on a few aspects.

First of all, HyGCN lacks optimization for the irregular
memory accesses caused by the large sparse attributed
graph, which plays a key role in general GNN processing.
For instance, many large graphs extracted from social net-
works are highly skewed [20]. The analysis of datasets used
by this work indicates the top 20% vertices with higher
degree are connected to the 50-85% edges of the whole
graph. The vertex property of these high-degree vertices are
more likely to be reused during the aggregation. In contrast,
the low-degree vertices are less probably to be reused. These
skewed vertices are equally buffered in HyGCN, which can
lead to frequent data movement between the on-chip buffer
and the external DRAM. While the feature dimension is
usually large in GNNs, this further deteriorates the memory
access efficiency of HyGCN.

Secondly, HyGCN has separate the modules for the
regular neural network processing part and irregular graph
processing part. Accordingly, they need independent on-
chip buffers which consume considerable chip area. Al-
though they can be pipelined, the imbalanced computing
of the different processing stages as shown in the prior
subsection makes it difficult to make use of both modules
for general GNN processing efficiently. We argue that a
unified hardware design that can reuse the limited on-chip
buffer among the different processing stages can provide
more energy-efficient GNN processing.

In summary, GNNs that combine both neural network
processing and graph-like processing can be computing
bound and memory bound. Particularly, the processing
bottleneck changes with the GNN algorithms and targeted
graphs, which makes general GNN accelerator design rather
challenge. The unique combined computing features also
make GNN processing inefficient on GPPs and hinders us
to reuse the existing DNN accelerators and graph processing
accelerators. The state-of-the-art accelerator HyGCN which
focuses on GCN acceleration still fails to consider the influ-
ence of the large sparse graphs on GNN processing suffi-
ciently and to unleash the potential of GNN acceleration.
This motivates us to concentrate on the memory access
optimization for energy-efficient general GNN processing
in this work.

4 ENGN ARCHITECTURE

4.1 EnGN hardware architecture

On top of the unified EnGN processing model, we develop
a customized EnGN accelerator as shown in Fig. 5. It only
focuses on the GNN inference and adopts 32-bit fixed point
to maintain the accuracy of GNN inference. A neural graph
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Fig. 5: EnGN hardware architecture.
processing unit (NGPU) is integrated to perform Feature
extraction, Aggregate, and Update operation in a unified
architecture. It has an array of homogeneous processing
elements (PE) and the array size is 128 × 16. Each PE unit
contains a local register file to store the temporary results
and acts as intermediate for inter-PE communication. Each
PE in the same column of the Ring-Edge-Reduce (RER)
array is connected to its neighbors in a ring network to
perform aggregate operation and each PE in the same row of
the RER array can process a vertex property, which means
the NGPU can process 128 vertices simultaneously. How-
ever, such processing parallelism requires substantial mem-
ory bandwidth. Thereby, to avoid performance degradation,
EnGN optimizes the memory access patterns for vertex data
and edge data moving. For source vertex data access in the
large graph, we adopt the graph tiling technique and ensure
that the source vertex fetching only induces accesses to
the continuous memory addresses. For random destination
vertex accesses in the aggregate and update stage, EnGN
leverages the hashed edge data layout and multi-level cache
method to avoid write conflicts and improve data hit rate
in the compact on-chip buffer. During processing, the edge
parser of NGPU reads the edge list of the graph from the
edge banks and parses it into bit-stream that controls the PE-
array to perform inter-row aggregate operation (¬ in Fig. 5).
The hardware modules are controlled by the signals de-
coded from the EnGn instructions. Each coarse-grained
instruction is responsible for a specific processing function
such as feature extraction and data movement operations.
Meanwhile, the instruction also contains hardware-relevant
parameters for the processing functions such as the tiling
sizes, feature dimension, and data starting addresses in on-
chip buffers or the external memory. Since the parameters
of different instructions vary, the instructions are variable-
length but aligned to 64bit. The instructions are generated
with an offline GNN compiler specifically for the EnGN
accelerator and the sequence of the instructions determines
the processing order of the GNNs on EnGN. In addition,
each PE in the NGPU is attached by an XPE to perform acti-
vation functions, bias operation, and rounding operation in
the GNN processing stage. A vector processing unit (VPU)
is used to deal with different feature extraction, aggregate,
and update functions of GNNs illustrated in Table 1. Two
auxiliary modules: Prefetcher and Format converter, are
used to assist the memory accesses and improve the input
graph format compatibility respectively.

4.1.1 The RER PE array

The feature extraction stage maps the high dimensions
property of vertices to the low dimensions by using the
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Fig. 6: Architecture details.
learned weight matrix, and this stage is simply matrix
multiplication operation. As shown in Fig. 6, in order to han-
dle the arbitrary-dimension property of GNN algorithms,
we propose the graph property aware (GPA) dataflow to
decouple the input property of the vertex and the hardware
computing structure. In this manner, each PE in the same
column of PE-array is responsible for a single dimension
of vertex property and each PE in the same row handles
a single vertex. The properties of a vertex are arranged
in columns and aligned in the property bank. The dimen-
sions of input vertex property become independent to the
hardware architecture and can be continuously injected into
the PE-array regardless of the array size and the property
dimension. When the weight matrix has a column number
larger than the size of the PE-array, we choose to split the
weight matrix into partitions such that each partition match
the size of PE-array. Note that the split weight matrices are
placed in the weight banks in row-major order. After parti-
tioning, the processing unit can handle vertex properties of
arbitrary dimensions.

4.1.2 The RER topology for PE communication
The aggregate procedure needs to collect the information ac-
cording to the edge information. Thereby, as shown in Fig. 6,
each row of the PE-array in NGPU possesses a dedicated
edge bank and each PE in the same row receives the
same control signal parsed from edge list in the graph
to gather the corresponding vertex property. Meanwhile,
because each PE needs to broadcast its own vertex features
generated by the feature extraction stage to all other PEs
in the same column, aggregating the received information
simultaneously can result in a large amount of hardware
resource and power consumption. Thereby, inspired by
the ring-all-reduce concept [23], we propose the ring-edge-
reduce (RER) aggregate dataflow to conduct aggregate stage
inside the PE array instead of moving the data out to the
buffer. As shown in Fig. 6, because each column of PE
performs the same operations without any communication
in between, each PE in the same column of the array is
connected to its neighbors through an on-chip network of
ring topology. Each PE in the same column only commu-
nicates with its two nearest neighbors (north, south). In
our design, the PE sends its data to the northern neighbors
and receives the data sent from the southern neighbors for
property aggregating. In this manner, a PE can select the
relevant vertices to aggregate based on the control signal
parsed from the edges during the data flow across the ring.

The RER dataflow makes the hardware design simple yet
efficient when the graph is dense and the vertex properties
that flow through the ring are mostly used for aggregation.
However, many of the large graphs in practice are sparse
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Fig. 7: Edge reorganization.
and aggregation in PEs is inactive in many cases. A RER
dataflow example on a sparse graph and the adjacency
matrix is shown in Fig. 7. The computing array is assumed
to be 3× 3. In cycle 0, three edges from different edge banks
will be fetched and the properties of V0, V1, and V2 will flow
across the ring at the same time. It takes the RER three cycles
to complete the movement of the three vertex properties and
the corresponding aggregation on V0, V1, and V2. Similarly,
it takes the RER another three cycles to repeatedly transfer
the three vertex properties through the ring to aggregate on
V3, V4, and V5. Thereby, it takes the RER at least 6 cycles to
perform the aggregate of the graph and many of the time
slots are idle as marked with crosses in the figure.

To improve the efficiency of the aggregation, we further
analyze the reason for the idle time slots. For example, PE(1,
0) is idle in Cycle 0 because the edge to be processed is
2 → 1 and it does not have the properties of vertex 2 yet.
However, if it fetches the edge 1→ 4 first, it can perform the
aggregate of vertex 4 using the property of vertex 1 at Cycle
0. With this observation, we propose to reorganize the edges
in each edge bank to ensure the vertex properties flowing
through the ring is used as much as possible. Fig. 7 exhibits
the reorganized edges and the corresponding aggregation.
With the edge reorganization, the aggregate completes in 3
cycles and the computing array is fully utilized. Basically,
the order of the vertex properties flowing through the ring
is known given the computing array. The required vertex
property of each edge is also determined. Thereby, reorga-
nizing the edges in each edge bank based on the order of the
vertex properties flowing through the ring can maximize the
aggregation efficiency of the computing array. The proposed
edge reorganization result is depending on the structure of
the input graph and PE array. It can be reused by different
GNN algorithms targeting at the same graph structure and
EnGN architecture. It is typically performed offline on CPUs
and considered as a general approach of preprocessing
widely applied in many graph computing applications. The
preprocessing time lasts from several seconds to minutes
once and for all, and it makes no impact on the on-line GNN
processing performance.

4.2 The On-chip Memory Hierarchy

PE register file The register files (RF) equipped in the
PEs are divided into four groups including source ver-
tex groups(SRC RF), destination vertex groups (DST RF),
and two shadow groups (Shadow RF), which is depicted
in Fig. 8. The SRC RF stores the source vertex values
generated in the feature extraction stage. The DST RF stores
the destination vertex feature updated during the aggregate
and update stages. In addition, there are two programmer-
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invisible Shadow RFs holding the SRC and DST vertex
values previously generated by the PEs of the same column.

Multiple-level caches The real-world graph has up to
millions of vertices. Although the graph tiling technique
adopted by EnGN helps fit the sub-graphs into the on-chip
buffer, the set of vertices in the sub-graphs will still outsize
the register files of the PE array. Meanwhile, the result
banks are used to store the temporary aggregate results.
PE frequently accesses the long-latency result bank will
result in performance degradation. Consequently, as shown
in Fig. 8, we insert a degree aware vertex cache (DAVC)
between the result banks and the register file of each PE
to improve the performance of the EnGN. The register file,
DAVC, and the result banks are regarded as the first, second,
and last level memories on-chip, respectively. All capacity of
DAVC is used to cache high-degree vertices. The reason will
be illustrated in section 6. DAVC uses the destination vertex
id of edges as the line tag to determine whether the access to
the vertex data hit or not in the DAVC. If hit, the vertex data
will be directly read to DST RF in the PE unit. Otherwise,
EnGN will access the last-level result banks. In this manner,
the DAVC can alleviate the overhead incurred by the result
bank accesses.

5 ENGN OPTIMIZATION
5.1 Observations of GNN computing

To further optimize the EnGN design, we try to explore the
characteristics of GNN algorithms and seek key observa-
tions that may guide the EnGN architecture optimization.
Suppose the input graph G = (V,E) with N vertices and E
edges is depicted with an adjacency matrix A ∈ RN×N . The
vertex property of the graph is X ∈ RN×F with F channels
and the learned filters, i.e., weight is W ∈ RF×H where H
is output property dimension. Then, the output of the GNN,
i.e., O can be represented as Eq. 6:

O = σ(A(XW )) (6)
According to the formulation of GNNs, we obtain two

major exploitable observations:
1. The order of feature extraction processing and aggregate

processing in GNNs are exchangeable when the operator in
aggregate processing is sum.
When the operator used in aggregate is sum which is

widely adopted in GNN algorithms, the computing in Eq. 6
can be changed to Eq. 7 without affecting the result because
of matrix multiplication associative law. While the amount
of operations using the distinct computing order is also dif-
ferent, we may choose the order that incurs less computation
in each iteration.

O = σ((AX)W ) (7)

2. The weight size of GNNs is independent to the size of the input
graph and it is usually small. While the input graphs can be
large and typically dominate the memory accesses.
According to Eq. 6, the weight size of GNNs is irrelevant

to the number of vertices in the graph. In this case, the
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Fig. 9: Graph tiling and tile scheduling.
weight size can be much smaller compared to the graphs
that may include millions of vertices, which is also a key
distinction from CNNs. Input graphs will dominate the
memory accesses and dealing with the large graphs in
GNNs will be critical to the accelerator performance.

5.2 Dimension-aware stage re-ordering
According to Observation 1, the processing order of GNN
stages, the feature extraction, aggregate, and update stages,
will not affect the computing results, but it can change the
total number of operations in a GNN. We analyze the quan-
tity of operations when using different computing order,
and aim to find the best way to schedule the stages. For
feature extraction, the number of operations, i.e., multiply-
accumulate in Eq. 6 and Eq. 7 are the same and it is equal
to N × F × H . Similarly, update does not change with the
computing order. Nevertheless, for aggregate, the order of
GNN computing leads to different number of operations,
i.e., accumulation in aggregate. When Eq. 6 is used, the
number of operations is E × F . When Eq. 7 is chosen, the
amount of operations becomes E ×H .

While the property dimension varies as observed in
last subsection, F is not equal to H . To reduce the total
computing, when the input vertex property dimension F is
larger than output feature dimension H , we should choose
Eq. 6 for GNN computing. Otherwise, we should use Eq. 7.
Following this idea, we propose a dimension-aware stage
reordering (DASR) strategy based on the input and output
property dimension comparison. The DASR can be imple-
mented by altering the instruction sequence that defines the
computing order of GNNs, so it will not incur additional
hardware overhead.

5.3 Graph tiling and scheduling
According to Observation 2, a real-world graph that can
be very large dominates the memory accesses in GNNs
and it cannot be fitted to the limited on-chip memory of
EnGN. To address this issue, EnGN tiles the large graph
into intervals and shards using a grid partition approach
proposed in [19]. The basic idea of the grid partition is to
divide all the vertices into Q disjointed intervals. Then the
edges of the graph with both source and destination vertices
limited to one interval can be partitioned into Q2 disjointed
shards. Each shard must be fitted to the on-chip memory
of EnGN to ensure efficient computing without external
memory accesses.

With the tiling, EnGN processes with the granularity of
a tile. For each tile, the number of vertices remains larger
than the row size of the PE array while each row of PE can
only handle a single vertex at one time according to the
dataflow proposed in prior section. In this case, the vertices
are processed in batch and the batch size is equal to the
row size of the PE array. The batch processing of a tile is
described in Fig. 9. Instead of conducting feature extraction

TABLE 4: I/O cost.
Read Size Write Size

Column-oriented (Q2 −Q+ 1)F +QH QH
Row-oriented QF + (Q2 −Q+ 1)H Q2H

and aggregate sequentially, we have them overlapped. Ba-
sically, aggregate starts when a batch of vertices complete
feature extraction.

Although tiling ensures EnGN to process using just the
data that are accommodated in the on-chip buffers, there are
still data dependency between the different tiles. The order
of the tile execution essentially affects the data reuse and the
amount of external memory accesses accordingly. Thereby,
tile scheduling is also an important design option that needs
to be intensively optimized.

The graph is split into a 2D array of tiles. The tiles in each
row have the same source vertices while the tiles in the same
column have the same destination vertices. Intuitively, we
may schedule in either a row manner or a column manner.
In the column-major order, new source vertices must be
reloaded tile by tile while the destination vertices in the
same interval reside in on-chip buffer until the column of
tiles complete execution. In the row-major order, source
vertex properties can be buffered until the whole row of
tiles is processed. We also notice that there are also shared
data between neighboring columns or rows and propose to
schedule with an S-shape as shown in Fig. 9. For example,
the bottom tile of a column shares the same source vertices
with the bottom tile in the next column. Similar data sharing
can be observed in row manner.

The different tile scheduling strategies mainly differ on
the external memory accesses and we quantitatively analyze
the I/O cost. For column-major order, each column of tiles
requires to load Q tiles of source vertices and the total
amount of load is Q2. When neighboring column data reuse
is considered, the amount of data to be loaded becomes
Q2 − Q + 1. While the destination vertices in each column
can be reused, the total amount of write is Q. For row-major
order, the amount of read is the same, but the amount of
write is much larger, because tiles in a row generate many
intermediate outputs and must be frequently swapped to
external memory among different tile execution. The to-
tal amount of write is Q2. While the dimension of the
vertex property also affects the amount of I/O cost and
the dimension of input vertex property and output vertex
property is usually different, we further take the vertex
property dimension into consideration and the I/O cost is
summarized in Table 4.

Suppose that the latency of read and write external
memory is equal. Comparing the overhead of the two
different tile scheduling strategies, we obtain the following
formulation:
IOcolumn−major − IOrow−major ≈ (Q− 1)(2H − F ) >0 (8)

Based on Eq. 8, it can be concluded that the column-
major order scheduling outperforms the row-major order
scheduling when F is smaller than 2H. Otherwise, row-
major order scheduling is preferred. While F and 2H are
mostly determined by the GNNs and the comparison varies,
we employ an adaptive scheduling to minimize the exter-
nal memory accesses. The adaptive scheduling option is
explicitly encoded in the instructions which are generated
at compilation time based on the GNN models.
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TABLE 5: System configurations and performance comparison with a state-of-the-art GCN accelerator.
CPU-DGL/PyG GPU-DGL/PyG HyGCN EnGN 22MB EnGN

Compute Unit 3.0GHz @
65 cores

1.25GHz @
5120 cores

1GHz @ 32 SIMD 16 cores
and 32X128 arrays

1GHz @ 128X16 arrays
32 PE units in VPU

1GHz @ 128X16 arrays
32 PE units in VPU

On-chip Memory 42.75MB 34MB 22MB+128KB 22MB+128KB 1600KB
Off-chip Memory 255.9GB/s DDR4 ∼900GB/s HBM 2.0 256GB/s HBM 1.0 256GB/s HBM 2.0 256GB/s HBM 2.0

Peak Performance*(GOP/s) - - 8704 6144 6144
Area (mm2) - - 7.8 (12nm) 31.2 (14nm) 4.54 (14nm)
Power (W) 150 300 6.7 10.2 2.56

Energy Efficiency (GOPS/W) - - 1299.1 602.35 2400
Area Efficiency (GOPS/mm2) - - 1115.9 196.9 1353.3

GNN speedup on average - - 1 5.44X 2.97X
* Peak performance only takes into account the computing units designed for the feature extraction and aggregate stage.

TABLE 6: GNN models and datasets.
Model Graph #Vertices #Edges #Feature/

#Relation Label

GCN
Cora (CA) [2] 2708 10556 1433 7

PubMed (PB) [2] 19717 88651 500 3
Nell (NE) [11] 65755 251550 5415 210

GS-Pool
CoraFull (CF) [11] 19793 126842 8710 67
Reddit (RD) [14] 232965 114.6M 602 41
Enwiki (EN) [9] 3.6M 276.0M 300 12

Gated-GCN
Amazon (AN) [9] 8.6M 231.6M 96 22

Synthetic A (SA) [24] 4.19M 67.1M 100 16
Synthetic B (SB) [24] 8.38M 134.2M 100 16

GRN Synthetic C (SC) [24] 12.41M 205.3M 64 16
Synthetic D (SD) [24] 16.76M 268.4M 50 16

R-GCN

AIFB (AF) [18] 8285 29043 91 4
MUTAG (MG) [18] 23644 192098 47 2

BGS (BG) [18] 333845 2166243 207 2
AM (AM) [18] 1666764 13643406 267 11

Note that the strategy of DASR, graph tiling, and tile
scheduling depends on both the input graph structure and
the GNN model, and such processing optimization mea-
sures can be taken during the GNN model compilation stage
and it influecnes the generation of EnGN instructions.

6 EVALUATION
6.1 Experimental setup
Accelerator simulator We built a cycle-accurate simulator to
measure the performance of EnGN accelerator. This simula-
tor models each module of EnGN accelerator faithfully and
the timing behaviors of the modules are co-verified with the
synthesized RTL design. The simulator is also integrated
with Ramulator [25] that supports High Bandwidth Mem-
ory (HBM 2.0) to characterize the memory accesses to HBM
2.0 with 256GB/s bandwidth.
EnGN configuration&implementation The configuration
of EnGN is depicted in Table 5. EnGN includes a 512KB
multi-bank property buffer, a 512KB multi-bank weight
buffer, a 256KB multi-bank edge buffer, a 256KB multi-
bank result buffer, and a 64KB distributed vertex cache. We
synthesized the EnGN using Design Compiler (DC) with
the TSMC 14nm process technology, conducted the placing-
and-routing using ICC compiler (ICC), and estimated the
power consumption using PrimeTime (PT). The energy of
HBM 2.0 is estimated with 3.9 pJ/bit as in [26].
Baselines We compared the performance and energy effi-
ciency of EnGN with that of three different baseline archi-
tectures. The first two are general-purpose processors, i.e.,
CPU and GPU, and the third one is a state-of-the-art GCN
accelerator called HyGCN. CPU platform is equipped with
Intel Xeon(Skylake) 6151@3.0GHz processor and 696GB
DRAM and GPU platform is equipped with NVIDIA Tesla
V100 SXM2 and 32GB HBM2. To make good use of the
general-purposed processors, we adopted the state-of-the-
art frameworks, i.e., DGL and Pytorch geometric (PyG)
to execute the GNN algorithms. The implementations are

denoted as CPU-DGL, CPU-PyG, GPU-DGL, and GPU-
PyG respectively. HyGCN that leverages 22MB eDRAM and
specialized computing arrays for GNN processing achieve
remarkable performance speedup over the GPU implemen-
tations. To make a fair comparison with HyGCN, we have
EnGN configured with the same amount of on-chip buffer.
Due to the lack of 14nm eDRAM library, we replace the
eDRAM with SRAM in the experiments. More detailed
configurations can be found in Table 5.
GNN models and datasets To benchmark the performance
of EnGN accelerator, we implemented a set of typical
GNN models on two distinct groups of datasets as shown
in Table 6. The top part includes four algorithms, i.e.,
GCN [2], GraphSage-Pool (GS-Pool) [14], Gated-GCN [15],
and GRN [27], which are mainly used for semi-supervised
classification. The four algorithms perform on seven real-
world graph datasets and four synthetic graph datasets. The
bottom part mainly targets at knowledge graph application
and R-GCN [18] is a widely adopted entity classification
algorithm. The corresponding datasets are from four typical
knowledge graphs. Particularly, note that the feature and
label columns represent the dimension of a vertex and the
number of labeled classes respectively.

6.2 Experimental results

Power&Area Table 5 shows the power and area of HyGCN,
EnGN 22MB, and EnGN. As the area of eDRAM is much
smaller than SRAMs, the power and area of EnGN 22MB
are larger than HyGCN, but the performance speedup is
more than 5X higher. Accordingly, the energy efficiency of
EnGN 22MB is relatively lower in general. Nevertheless,
when we compare HyGCN and EnGN, we notice that EnGN
still achieves around 3X performance speedup despite the
much smaller on-chip buffer. It indicates that the architec-
ture of EnGN greatly lowers the on-chip memory require-
ments and power consumption. In this case, the overall
energy efficiency of EnGN is 1.85X higher.

Performance We compare the performance of EnGN
to that obtained from the baseline computing platforms
including CPU-DGL, GPU-DGL, CPU-PyG, GPU-PyG, and
HyGCN. The comparison result is shown in Fig. 10. The
average performance speedup of all the models on all the
datasets over CPU-DGL and CPU-PyG are 1802.9X and
5108.4X respectively as shown in the last bar of Fig. 10 (a)
denoted as AVG. Also it can be observed that EnGN out-
performs CPU in all cases despite the software frameworks,
datasets and GNN models. We also compare EnGN with
GPU using DGL and PyG respectively. However, PyG runs
out of memory on larger datasets due to the lack of sufficient
memory optimizations. Thus, we only compare GPU-DGL
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Fig. 10: Performance comparison of EnGN over CPU, GPU, and HyGCN. (a) Performance speedup of EnGN over CPU-DGL
and CPU-PyG. (b) Performance speedup of EnGN over GPU-DGL, GPU-PyG, and HyGCN on small datasets. (c) Performance
speedup of EnGN over GPU-DGL and HyGCN on large datasets. Since GPU-PyG runs out of memory (OOM), it is omitted.
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Fig. 12: Energy efficiency of EnGN, CPU, GPU, and HyGCN. Some datasets are ignored due to literature space constraints.

on large graph datasets as shown in Fig. 10 (c). On small
graph datasets, we have both GPU-DGL and GPU-PyG
compared and the comparison is presented in Fig. 10 (b).
EnGN gains 14.41X, 8.35X, and 3.33X performance speedup
over the GPU-DGL, GPU-PyG, and HyGCN respectively on
the small datasets. On large datasets, EnGN achieves 19.75X
and 2.61X speedup on average compared to GPU-DGL and
HyGCN, respectively. In general, although GPU performs
much better than CPU, EnGN still outperforms in all cases.

On top of the computing platforms, we further compare
the performance speedup of EnGN on different datasets,
it can be noticed that EnGN typically shows significantly
higher performance speedup when the dimension of the
graph feature is small. For instance, the performance
speedup of GS-Pool on SD with smaller feature dimensions
is around 10613.17X on CPU-DGL and 35.34X on GPU-DGL
while the performance speedup of GS-Pool on CF with the
larger feature dimension is less than 36.47X on CPU-DGL
and less 2.22X on GPU-DGL. While EnGN with fine-grained
dataflow can make good use of the computing resources,
the computing efficiency does not vary much with the
datasets, which will be illustrated in the following exper-
iments. In contrast, CPUs and GPUs prefer datasets with
high-dimension features that can be accessed sequentially
and efficiently. Thereby, the different graph features of the
datasets lead to distinct performance speedup. Meanwhile,
we also find that the performance speedup of EnGN on RD
with the relatively high-dimension feature is actually clearly
higher than the average performance speedup. The reason
for this exception is that RD has rather high average degree
than the other graphs. The high-degree graph requires a
large memory footprint during the aggregate stage and can
no longer be fitted to the on-chip memory or cache. Thereby,

the computing efficiency degrades.
Throughput Fig. 11 shows the measured throughput of

EnGN, CPU, GPU, and HyGCN on the GNN benchmark
in Table 6. The average throughput of EnGN is 3265.87
GOP/s, which achieves 53.15% of the peak throughput.
The reason why the throughput does not reach the peak
is that the execution time of the feature extraction stage is
higher than that of the aggregate stage, which results in the
computing units designed for the aggregate stage usually
in idle status. In contrast, the measured average throughput
of CPU-DGL and CPU-PyG is only 29.29 GOP/s and 31.95
GOP/s respectively, which is 111.50X and 102.21X lower.
GPU with massive parallel processing units performs much
better. The average throughput using GPU-DGL and GPU-
PyG is 426.30 GOP/s and 1056.91 GOP/s respectively. Still,
the throughput of EnGN is 7.66X and 3.09X higher. This
is because GPUs are inherently optimized for compute-
intensive workloads with regular execution patterns such
as neural networks, but handling the aggregate stage of the
EnGN processing model with irregular memory accesses
suffers from low efficiency. While specialized GNN accel-
erators achieve much higher throughput than the general-
purpose processors, architecture optimization of the accel-
erators especially the on-chip memory hierarchy optimiza-
tions proposed in EnGN can further improve the through-
put by 2.34X over HyGCN on average. To gain insight
into the computing efficiency on different GNN models
and datasets, we measure the computing efficiency of the
different computing architectures including EnGN, CPU,
GPU, and HyGCN. As shown in Fig. 11, the computing
efficiency of EnGN typically keeps steady and does not vary
much with the models and datasets while CPU, GPU, and
HyGCN are more sensitive and the computing efficiency
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usually fluctuates with the feature dimension of the graphs
as pointed out in prior section.

Energy Efficiency To obtain the energy efficiency of the
different computing architectures, we need to measure its
power first. The power consumption of CPU and GPU is
obtained from the power meter and NVPROF respectively.
The power consumption of EnGN is estimated using Prime-
Time. The power consumption of CPU, GPU, HyGCN, and
EnGN is 150W, 300W, 6.7W, and 2.56W respectively. On
top of the power consumption, we further calculated the
energy efficiency using the total amount of operations and
the execution time. The energy efficiency is shown in Fig. 12.
The average energy efficiency of EnGN is 1326.35X and
1196.04X higher than CPU-DGL and CPU-PyG respectively.
When compared to GPU, the energy efficiency of EnGN over
GPU-DGL and GPU-PyG is 213.61X and 133.17X higher on
small datasets. The speedup goes up to 529.13X for large
datasets on which only DGL can be applied. Meanwhile,
the energy efficiency of EnGN is 6.2X higher than HyGCN
on average. The great energy efficiency speedup is mainly
attributed to the much lower power consumption of the
customized EnGN accelerator over the power-hungry gen-
eral purposed processors and the much higher performance
reported in the performance paragraph. The reasons for
the higher performance and lower power consumption are
already discussed, and we will not dwell on it.

6.3 EnGN optimization evaluation
Edge reorganization and RER In order to avoid the PE
idling in RER, we propose to reorganize the edge list to
improve the utilization of the computing array in EnGN.
Fig. 13 exhibits the performance comparison of GNNs on
EnGN with edge reorganization and EnGN without edge
reorganization. It can be noted that the edge reorganization
approach improves the performance significantly and the
average performance speedup is 5.4X. Meanwhile, we find
that the proposed edge reorganization approach typically
works much better for large datasets. The variation of the
benefits is mainly caused by the different proportions of
aggregation in the total amount of GNN computing. While
the aggregation in GNNs dominates the computing when
the graph is large, thus the performance improvement is
higher.

Sensitivity to the variation of vertex dimension The
vertex property dimension varies dramatically in GNNs, so
to be insensitive to the vertex property dimension variation
is of vital importance to a general GNN accelerator design.
In this experiment, we generated a synthetic graph with
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65000 vertices, 2.5M edges, and 16 classes. Then we change
the input vertex dimension from 64 to 4096 gradually
to evaluate the computing efficiency variation under the
different vertex property dimension setups. We compare
the computing variation of EnGN and GPU-DGL. Fig. 14
depicts GPU utilization is lower than 50% when the vertex
property dimension is smaller than 512. In contrast, the PE
utilization of EnGN is irrelevant to the input vertex property
dimension because the dataflow in EnGN decouples the
input vertex property dimension and the computing array.

Dimension aware stage re-ordering As mentioned in
section 5, the proposed dimension aware stage reordering
technique can reduce the total computing cost. In this eval-
uation, we get rid of the GS-Pool model because its aggre-
gate stage adopts the average operator which hinders the
stage reordering. We compared the performance speedup
of EnGN that adopts dimension-aware stage re-ordering
(DASR) strategy to two fixed processing strategy: (1) fea-
ture extraction, aggregate, and update (FAU), and (2) ag-
gregate, feature extraction, and update (AFU). Fig. 15 illus-
trates that the DASR strategy can improve the performance
of EnGN by 1.047x and 2.297x on averages compared to FAU
and AFU, respectively. The reason for the poor performance
improvement compared to FAU is the output dimensions of
GNN models on most datasets are decreasing, which makes
no scheduling necessary. However, in Reddit datasets, our
DASR strategy can improve the performance of EnGN by
1.34x and 8.96x compared to FAU and AFU strategy. This
is because the output dimensions of vertex property on the
last layer are 210 (Table 6), which is higher than that of on
the first layer. When the feature extraction stage performs
after the aggregate stage, higher dimensions incurs massive
accumulate operators in the aggregate stage. In contrast,
when we perform the feature extraction stage before the
aggregate stage, the dimension will be compressed to 16
and accumulates operators is only 16 for a vertex in the
aggregate stage.

Graph tiling scheduling In this evaluation, we lever-
aged the column-major (Column) and row-major (Row)
update strategy as baselines to evaluate our scheduling
strategy on GCN model. Fig. 16 illustrates the total I/O
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cost reduction induced by the EnGN scheduling strategy
compared to the Column and Row strategies, respectively.
In PubMed and large datasets, our graph tiling scheduling
strategy only reduces total I/O cost by 3.26x and 1.90x
compared to the Column strategy. This is because PubMed
and the large dataset only contain 3 ∼ 16 class labels,
which is less than the output dimension of the first layer.
In contrast, Nell, Cora-full, and Reddit contain 210, 67, and
41 classes respectively. Thereby, in this case, graph tiling
scheduling can reduce the total memory access cost by
29.62x and 3.02x on average when compared to Column
and Row, respectively. This is because the Column and Row
strategy stick to the fixed policy to update the graph while
our graph tiling scheduling can adjust the update dataflow
from the Row to Column based on the dimension changes
in GNNs. To further investigate the efficacy of DASR and
graph tiling, we applied these operations to the CPU and
GPU implementations using DGL framework, and compare
the results of performance. The optimized CPU and GPU
baselines are abbreviated as CPU-opt and GPU-opt respec-
tively, while the original implementations on CPU and GPU
are denoted as CPU-base and GPU-base accordingly. The
performance speedup over the CPU-base on the selected
GNN benchmark is presented in Fig. 19. It can be observed
that DASR and the proposed graph tiling are beneficial to
the GNN processing performance on both CPU and GPU
solutions, though the speedup varies across different input
graphs. Meanwhile, it confirms that EnGN outperforms all
the implementations on CPU and GPU with and without
such improvement.

Degree Aware Vertex Cache (DAVC) DAVC is a stan-
dard cache supporting replacement policy like LRU in gen-
eral. To improve the cache hit rate, we take the vertex degree
information into consideration and reserve part of the cache
entries for high-degree vertices which are determined with
offline static analysis and will not be replaced during the
execution. To determine the proportion of the reserved cache
entries, we analyze the cache hit rate under various propor-
tion setups ranging from 0 to 1. The experiment in Fig. 17
(a) reveals that the cache hit rate increases monotonically
with the proportion especially for the larger graphs. The

main reason is that on-chip cache is too small relative to the
large graphs and thus suffers frequent replacement when
LRU policy is applied. Thereby, we have all the cache used
for high-degree vertices. Meanwhile, we also analyze the
influence of cache size on the cache hit rate. Similar con-
clusion can be drawn as shown in Fig. 17 (b). Basically, the
cache hit rate for large graphs remains rather low and larger
cache size is preferred. Thus, in order to reduce hardware
complexity, the size of DAVC is configured to 64KB.

6.4 Scalability Analysis
Performance over number of PEs Since each row of PE
array handles one vertex and each column is in charge of
one dimension of output property, as the input graph and
output property dimensions get larger, the system can be
scaled up by adjusting the size of PE-array. We varied the
size of PE-array in EnGN, where the EnGN with 32 × 16
PE-array is set as baseline. Fig. 18 show EnGN achieves
good scalability on all GNN models and datasets. With the
increase of the row number in PE-array, the throughput
of EnGN is increasing. However, 32 × 32 array exhibits
no improvement over the baseline. This is because the
output property dimensions of the first layer (16) on all
models are below the column number of PE array (32),
which causes underutilization of PE array. Thereby, we can
adjust the size of PE array according to the datasets and the
complexity of GNN models to maximize the throughput of
EnGN. Fig. 18 also witnessed the speedup on large datasets
is lower than on small datasets. This is due to the large data
has higher edge-to-vertex ratio compared to small datasets,
which makes the aggregated stage new bottleneck.

7 RELATED WORK
7.1 GNNs software framework
There is a large amount of work that aims at building an effi-
cient system for graph applications on single node-machines
(CPUs) and GPUs [28]. However, these graph processing
frameworks aim at traditional algorithms, and there is a
lack of support for graph neural network computation. Even
though TuX2 [29] aims to bridge the gap between graph and
traditional machine learning algorithms, it is still unable to
support the inference and training stage of emerging GNN
algorithms. Thereby, NeuGraph [9] is proposed to recast the
graph specific optimization as dataflow optimization based
on Tensorflow. Meanwhile, [8] published a geometric learn-
ing library for deep learning on irregularly structured input
data based on Pytorch. The deep graph library [7] provides
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a fast implementation of GNN models based on PyTorch
and MxNet. NeuGraph, Pytoch geometric, and DGL are
generally running on the power-hungry CPU and GPUs,
which incurs energy-efficient issues and high cost. More
importantly, GPUs suffer from the under-utility of stream
processors during parallel GNN computation because of the
impact of the irregular graph data structure, which makes
energy-efficient issues more serious. Thereby, to address
these issues, we build an EnGN accelerator designed for
large GNNs to support energy-efficient GNN processing.

7.2 Deep learning & Graph accelerator

The resurgence of deep neural network (DNN) and its
substantial progress in various applications including im-
age, video, and speech spur the flourishing of the DNN
hardware accelerator [30]. For example, Diannao [31] maps
DNN onto an array of multiply-add units and employs a
data tiling policy to exploiting the locality in the parameters.
EIE [32] performs inference using compressed technique
and accelerates the inherent modified sparse matrix-vector
multiplication. However, these DNN accelerators are de-
signed for traditional DNN such as CNN and RNN, which
cannot handle GNNs because they lack the graph propaga-
tion model on the accelerator.

The wide gap between the general-purpose architectures
and the unique features of graph processing promotes the
rapid development of graph processing-specific accelerators
based on FPGA and ASIC. For example, Graphicionado [33]
and [34] presented a domain-specific accelerator for graph
analytics based on a well-defined, popular vertex program-
ming model. However, traditional graph accelerators are
designed for traditional graph algorithms, it lacks the com-
putation abstraction required by the neural network, such
as tensor and activation operations. Thereby, HyGCN [21]
abstracted the execution flow of GCN into aggregation and
combination stage and leveraged the SIMD and systolic
arrays to support neural network computation and graph
propagation model simultaneously.

8 CONCLUSIONS

In this paper, we present a high-throughput and energy-
efficient accelerator EnGN specialized for large graph neural
network processing. In order to provide high throughput
processing ability and solve the arbitrary dimension change
issues in the GNN algorithms, we proposed ring-edge-
reduce update dataflow and the accompanied hardware
architecture of RER PE-arrays is designed to simultane-
ously conduct high-throughput processing in the feature-
extraction, aggregate and update stages on GNNs. Mean-
while, the proposed graph tiling and scheduling technique
cooperating with a well-designed three-level memory hier-
archy enable EnGN to process large graphs efficiently. Ex-
perimental results show that EnGN achieves 2.97X speedup
and improves energy efficiency by 6.2X on average com-
pared to the state-of-the-art GCN accelerator HyGCN.
EnGN achieves performance gains of 1802.9X and 19.75X
and energy efficiency of 1326.35X and 304.43X compared to
CPUs and GPUs on average, respectively.
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